On the global output convergence of a class of recurrent neural networks with time-varying inputs
نویسندگان
چکیده
This paper studies the global output convergence of a class of recurrent neural networks with globally Lipschitz continuous and monotone nondecreasing activation functions and locally Lipschitz continuous time-varying inputs. We establish two sufficient conditions for global output convergence of this class of neural networks. Symmetry in the connection weight matrix is not required in the present results which extend the existing ones.
منابع مشابه
Robust stability of stochastic fuzzy impulsive recurrent neural networks with\ time-varying delays
In this paper, global robust stability of stochastic impulsive recurrent neural networks with time-varyingdelays which are represented by the Takagi-Sugeno (T-S) fuzzy models is considered. A novel Linear Matrix Inequality (LMI)-based stability criterion is obtained by using Lyapunov functional theory to guarantee the asymptotic stability of uncertain fuzzy stochastic impulsive recurrent neural...
متن کاملGlobal output convergence for delayed recurrent neural networks under impulsive effects
In this paper, we investigate convergence of state output for a class of delayed recurrent neural networks with impulsive effects. Based on properties of time-varying inputs and monotonicity of activation function, we establish some sufficient conditions to guarantee output convergence of the networks in which state variable subjected to impulsive displacements at fixed moments of time.
متن کاملGlobal Output Convergence of RNN in Menger Probabilistic Metric
This paper discusses the global output convergence for continuous time recurrent neural networks with continuous decreasing as well as increasing activation functions in probabilistic metric space. We establish three sufficient conditions to guarantee the global output convergence of this class of neural networks. The present result does not require symmetry in the connection weight matrix. The...
متن کاملApplication of artificial neural networks on drought prediction in Yazd (Central Iran)
In recent decades artificial neural networks (ANNs) have shown great ability in modeling and forecasting non-linear and non-stationary time series and in most of the cases especially in prediction of phenomena have showed very good performance. This paper presents the application of artificial neural networks to predict drought in Yazd meteorological station. In this research, different archite...
متن کاملAn efficient one-layer recurrent neural network for solving a class of nonsmooth optimization problems
Constrained optimization problems have a wide range of applications in science, economics, and engineering. In this paper, a neural network model is proposed to solve a class of nonsmooth constrained optimization problems with a nonsmooth convex objective function subject to nonlinear inequality and affine equality constraints. It is a one-layer non-penalty recurrent neural network based on the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neural networks : the official journal of the International Neural Network Society
دوره 18 2 شماره
صفحات -
تاریخ انتشار 2005